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“I dreamed about a human being.” (Collage By Fran Simó)
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The recent Department of Defense (DOD) Artificial Intelligence (AI) strategy calls for the Joint Artificial 
Intelligence Center (JAIC) to take the lead in “AI ethics and safety.”1 In line with this directive, the 
JAIC and the individual services must develop a coherent ethical review process to identify and miti-

gate potential ethical risks during project development. To date, the U.S. Defense Innovation Board (DIB) has 
handled much of the DOD emphasis on AI ethics culminating in the publication of its AI principles report.2 
Although it provides guideposts, it does not necessarily generate actionable controls to limit ethical risk on 
individual projects. The challenge for the department is to generate a project governance architecture that 
adequately addresses these ethical risks while also reaping the considerable benefits of AI. This article provides 
recommendations for implementing project governance controls based on an ethical framework while provid-
ing tailorable solutions to tightly control those projects with high ethical risk and speeding the implementation 
of those with low risk. In this way, a tiered approach to project governance will allow the Department to more 
closely balance the ethical challenges with the need for efficiency in the development of this technology. 

Not all AI projects carry the same ethical risk, yet DOD currently lacks a formalized process to delineate 
and separate projects by ethical risk or consequences or both. Currently, the Department draws a distinction 
between Lethal Autonomous or semi-autonomous Weapons Systems (LAWS)3 and those that are not autono-
mous weapons systems, yet there is more distinction that needs to be made in order to adequately identify the 
risks associated with the technology. In tiering out risk categories, the Department can focus resources to review 
and limit ethical risk on those projects most likely to cause ethical dilemmas while accelerating those identified 
as low consequence. It should be noted that all projects pose their own unique ethical concerns and that there 
is no one-size-fits-all policy that can be applied to limit all potential ethical challenges across the broad array of 
projects being pursued. To address such a fundamentally important issue, this article proposes a business process 
that can identify ethical risks and then mitigate them appropriately, according to their relative risk. 

The Defense Innovation Board AI principles report detailed 12 specific recommendations for DOD 
to focus on to manage ethics in AI.4 This article focuses on two of these recommendations and proposes 
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project governance solutions to address these 
challenges and translate them into concrete project 
governance controls. First, in line with the DIB’s 
recommendation to create a risk-based management 
methodology (DIB recommendation #9), this arti-
cle proposes using risk-based screening criteria to 
separate and tier projects based on their ethical risk. 
This approach allows for more stringent controls 
on projects of high risk, while speeding through 
projects of low risk. Second, the article builds on the 
risk management tiering framework and uses this 
framework to provide recommendations on AI reli-
ability benchmarks (DIB recommendation #7). 

AI as a Unique System Enabler
Artificial Intelligence, as an enabler to weapons 
systems, is unique in its ethical concerns and consid-
erations and warrants a new screening approach 
outside of those in normal acquisition channels. 
Unlike other weapon systems, in AI/Machine 
Learning (ML) projects the end use and develop-
ment of the product are more closely linked. That 
is to say, when using AI in a weapon system, the 
developer will, by design, make some choices that 
under conventional applications would be left to the 
end-user. These choices are not necessarily self-evi-
dent but are emergent based on the decisions made 
by developers about the boundaries and rules devel-
oped within a particular algorithm. Much has been 
discussed regarding potential ethical issues with 
ceding decision-making to AI algorithms.5,6,7 The 
question becomes, can we control those decisions 
and bound them appropriately so that we can con-
trol the ultimate end use of the system?  

Traditionally, ethical controls on technol-
ogy were inserted through policy constraints 
on end-use. However, the relationship between 
developer and end-user is shifting the ethical bur-
den backwards towards the developers. This shift 
necessitates a new approach to managing ethical 
issues. It is simply not sufficient to place policy 

constraints on end-use. In order to adequately 
mitigate ethical risks with this technology, policy 
controls to adjudicate ethical challenges must be 
applied at the outset, during the design phase, and 
then continued during development. 

This relationship between end-user and devel-
oper will be further strained by the movement from 
narrow AI towards more complex adaptive systems. 
In the traditional designer-user relationship, the 
design engineers allowed themselves a certain level 
of plausible deniability as to the intent of the end 
product. In effect, the engineers could pass off the 
ethical dilemmas to the end-users and force them to 
make the hard decisions. As systems become more 
automated, however, it will force engineers and 
therefore policymakers to be more upfront with the 
potential ethical challenges of end-use. This problem 
emerges from the fact that the actions of the system 
will be bounded by the parameters of the design 
engineers. In simple mechanical systems, all deci-
sions regarding use are made by a human operator, 
thereby all moral decisions regarding use or non-use 
are pushed to the user based on context and sur-
roundings. In highly automated systems, however, 
those decisions must be made by the engineers on 
the front end. Therefore, during the development of 
each system, a program of identifying risks and con-
sequences must be developed and then implemented 
through both internal controls in the algorithm and 
external controls through policy constraints. 

AI-enabled systems must be viewed through 
the lens of a moral agent. That is, a system that on 
the one hand, does “not necessarily exhibit…free 
will, mental states or responsibility,” but on the 
other hand is an entity that performs actions.8 It is 
these actions, that have ethical ramifications. The 
moral decisions are not made by the machine, they 
are made by the design engineers, and the machine 
is merely the agent that carries out the action 
expected of it. Therefore, it is here, in the develop-
ment stage, that the focus of project controls and 
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project governance must lie in order to effectively 
manage ethical risks. The most effective way to 
achieve ethical behavior by a moral or ethical agent 
would be to ensure that the outputs of the machine 
are constrained to avoid unethical outcomes. This 
could be accomplished by creating the boundary 
states that implicitly support the ethical behavior of 
the machine by not allowing the system to conduct 
actions that are outside of the ethical framework.9 

An AI Ethical Risk Management 
Methodology
From a policy perspective, the focus of ethically apply-
ing artificial intelligence to weapon systems needs to 
focus on defining the boundaries for the given tech-
nologies. This article relies heavily on the utilitarian 

approach to ethical issues, or the view that the morally 
correct action is one that produces the greatest good. 
There is a practical reason for this. The utilitarian 
approach focuses on weighing risks with conse-
quences and tends to be the approach that is most 
easily quantified and measured.10 Using this approach 
allows program managers and policymakers the abil-
ity to make rational decisions regarding the potential 
risks of the technology and to make informed miti-
gation decisions. It is important to note that this does 
not foreclose the use of other applicable ethical lenses, 
yet it provides a clear way ahead for providing policy 
guidance to the development of these technologies. 

The two major recommendations for consider-
ation in risk management are discussed below. First, 
project acceptance criteria must be adopted in order 

U.S. drone attack on the convoy of the Iranian general Qassem Soleimani, 3d render. Baghdad airport, Iraq.
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to initially identify the initial ethical risk and deter-
mine boundary conditions for development. Second, 
projects cannot be evaluated in a one-size-fits-all 
approach; a consequence-based project tiering must be 
developed which separates projects based on potential 
consequences and applies additional controls to those 
of higher consequence while allowing those of lower 
consequence to be moved through more quickly. 

Tiering of Projects Based on Ethical Risk
The process of tiering projects for ethical risk must 
begin with an initial screen for ethical issues in 
development. Applying a utilitarian perspective, if 
the project’s expected benefits outweigh the potential 
risks within the proposed boundaries, the project 
then may be continued for development. If the project 
fails to meet this test, the Department can choose to 
limit the boundaries of the project to a more tightly 
controlled problem set until the ethical balance is 
achieved or until the project is deemed to be irrecon-
cilably unbalanced and discarded. Importantly the 
output of this initial screen should be codified in an 
official document such as an “Ethical Issues Report” 

which would determine initial bounds for develop-
ment, and this report would then be updated during 
project execution with additional controls based on 
more in-depth analysis explained below. 

This initial screen of projects is likely already 
occurring in an informal fashion, yet a formalized 
procedure would force the Department to codify and 
document guidance to program managers within 
the services and to continue in an institutionalized 
fashion the ongoing identification and mitigation of 
emergent risks throughout the lifecycle of projects.

Only once the risks are identified can controls 
be applied within the identified boundary states 
in order to ensure that ethical risks are effectively 
managed. Each project must be tiered out based 
on its consequence level, then scored against its 
potential risks. Because some risks are more relevant 
than others based on project consequences, a risk 
relevancy matrix has been developed to assist with 
screening project risks. The matrix presented below 
can be used to ensure that ethical risk management 
strategies are being applied appropriately based on 
the type of project associated.

Consequence Tiering Level Ethical Risk Relevancy Matrix

Tier 1
Lethal Autonomous or Semi- 
Autonomous Weapons System

High High High High Low

Tier 2
Targeting information Systems Moderate Moderate Moderate High Low

Safety-Critical Systems High High Moderate High Low

Tier 3
Privacy concern systems Moderate Moderate Moderate Moderate High

Business Process systems Low Moderate Low Low Low

 

Te
ch

ni
ca

l S
af

et
y

M
al

ic
io

us
-U

ni
nt

en
d

ed
 

U
se

 c
as

e

A
lg

o
ri

th
m

ic
 B

ia
s 

in
 

d
at

a 
se

t

A
lg

o
ri

th
m

 t
ra

in
in

g
 R

is
k

E
xc

es
si

ve
 c

o
lle

ct
io

n 
ri

sk

Table 1: Risk relevancy matrix
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The recommended consequence categories to 
be developed are: lethal autonomous or semi-au-
tonomous weapons systems, targeting information 
systems, safety-critical systems, privacy concern 
systems, and business process systems. Those 
categories are then tiered to determine additional 
controls on projects. Tier one projects should 
already be identified and by Department policy are 
to be managed in accordance with DODD 3000.09 
Autonomy in Weapon Systems.11 Tier two projects 
include all projects that result in targeting informa-
tion and projects that have a significant safety risk. 
These projects must be screened for ethical risks 
based on the risk categories in the table and outlined 
below. The risks should then be formalized and mit-
igated through a formal risk management procedure 
overseen by the AI Ethics Committee. 

The recommended risk categories to be scored 
against are technical safety risks, malicious/unintended 
use case risks, algorithmic bias in data set, algorithm 
training risks, and excessive collection risks.12 

1.	  Technical Safety: The first question for any 
application is whether it works as intended 
over time and in various expected applications. 
The question of the reliability of the system in 
context is a significant issue in AI systems. This 
technical safety risk is especially acute in that 
in a contextually sub-optimal state a system 
may perform an unexpected action resulting 
in an unethical consequence. This problem 
is generally mitigated through a rigorous test 
and evaluation process; however, for AI/ML or 
other complex adaptive systems, this process is 
challenged as discussed below. These technical 
safety/reliability risks pose a significant ethical 
concern, in that the system can only be ethically 
employed if its output is sufficiently known by 
the operator. The limitations of this technology 
must be well communicated to the operator in 
advance of the decision to employ it. Unreliable 
systems pose a challenge to this dynamic in that 

the operator may believe it to be operating nor-
mally when it is not.  

2.	 Malicious/Unintended Use Case Risks:13 The 
second risk to be analyzed is the unintended 
use case risk. This risk applies to a properly 
functioning system that is used in a way outside 
of the expected or approved usage. In this case, 
an ethically responsible application could be 
co-opted by end-users for potentially unethical 
consequences. A detailed review of possible use 
cases should be conducted to identify and miti-
gate the possible unintended uses. 

3.	  Algorithmic Bias in Data Set: One challenging 
aspect of neural networks is that the data that 
is used to generate the outputs are generally 
created and curated by humans who harbor 
inherent biases. These data sets by their very 
nature have the possibility to produce unin-
tended results. In this case, it refers to the fact 
that the algorithm will reflect the implicit 
values of the person who developed it. This 
is the one ethicists have focused on the most. 
These biases are then broken down into three 
subcategories or more depending on the author; 
pre-existing bias, technical bias, and emergent 
bias.14 These biases have been in place in soft-
ware engineering well prior to the advent of AI 
but remain significant in the use of AI. 

4.	 Algorithm Training Risks: One major risk in 
this category for military applications lies in 
insufficient datasets to train ML algorithms on. 
In the case of military applications, there are 
simply not the number of examples that would 
provide the necessary context for an AI algo-
rithm to operate in varying environments. The 
mitigation for this risk has primarily been to 
create synthetic training environments for the 
algorithms to operate in. The challenge with 
this approach is that the synthetic environ-
ment will likely not be an exact match for the 



MOLLOY

112  |   FEATURES	 PR ISM 9, N O. 3

operating environment out in the world. This 
mismatch has the potential for the algorithm to 
operate outside the bounds intended.

5.	 Excessive Collection Risk: Algorithms that 
autonomously collect and analyze data have the 
potential to excessively collect data beyond the 
scope of the initial application. This excessive 
collection has the potential to cause privacy or 
even legal challenges in the use of the technol-
ogy. This risk is especially prevalent in the use 
of AI in the cyber domain, where the data on 
networks is not well defined in terms of owner-
ship or nationality.15

Reliability Benchmarks for Defense AI 
Applications
Reliability benchmarks remain one of the major 
unanswered questions for the development of 
AI-enabled systems within the DOD. AI has the 
potential to revolutionize the way the Department 
does business, but as with each new technology, 
there is risk associated with the adoption and 
widescale use of the new technology. By codify-
ing hard reliability benchmarks, the Department 
can formalize the risk acceptance for developers. 
Likewise, defining reliability will give end-users 
the opportunity to understand the limits of their 
respective systems with greater fidelity. With this 
understanding, the DIB AI report recommended 
developing AI performance benchmarks relative 
to human performance.16 The approach of tying 
reliability to human performance is not new; the 
same approach has been taken in many other indus-
tries, most notably the self-driving car industry. 
The DOD, however, has unique challenges that will 
compound the difficulty of achieving these same 
standards for benchmarking. For DOD applica-
tions, simply addressing whether an AI-enabled 
system performs better than a human analog is an 
insufficient approach to manage the risks associated 
with AI-enabled systems adequately. 

Again, a tailored approach should be taken in 
order to manage the risks appropriately based on the 
risk for each application. This article proposes the 
use of three separate benchmarks, aligned against 
the project consequence tiering criteria introduced 
previously to more closely align the performance 
requirements with the potential for unintended con-
sequences. It should also be noted that the research 
into AI reliability benchmarking is extremely new, 
and therefore there is a dearth of published industry 
standards or academic research on which to rely. The 
self-driving car industry appears to be the furthest 
along in this effort, but even here, many different 
approaches are being adopted with no single standard 
accepted as the norm. Some standards, such as ISO 
26262, have developed highly strict standards that 
state that a car can only make 10 mistakes for each 1 
billion hours of operation while humans are expected 
to make 10,000 mistakes in the same period of time.17 
Yet even this ISO standard has not been widely 
adopted. In this environment, applying policy ecom-
mendations remains a challenge yet is imperative to 
ensure the continued viability of this technology.

Technical Challenges in Reliability 
Benchmarking
The unique environment that the DOD operates in 
compounds the problem of applying appropriate 
reliability benchmarks like those in other indus-
tries. The DOD environments for which AI-enabled 
systems are being developed are in many instances 
high-consequence while at the same time low fre-
quency. The high-consequence nature of the systems 
will require extremely high reliability, while the low 
frequency of such events creates a data deficit chal-
lenge. This deficit makes it difficult to adequately 
train algorithms to match, or exceed, human perfor-
mance. For a moment, let us consider the self-driving 
car industry as an analog for a high-consequence 
complex adaptive system. For this industry, human 
performance is relatively well known, and vehicle 
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fatality data is readily available. In 2016, for example, 
there were 1.16 fatalities for every 100 million miles 
driven. To adequately field test an AI-enabled auton-
omous driving system to reach 95 percent reliability 
in comparison to human performance, the vehicle 
would need to be tested for 255 million miles with 
no accidents.18 This standard is extremely difficult to 
achieve for self-driving cars even in such a data-rich 
environment. The self-driving car industry is one 
that is high-consequence but also high frequency. 
Yet even in this industry, novel approaches are being 
made in order to ensure reliability that approaches or 
exceeds human performance. Even in such data-rich 
environments challenges exist in generating data to 
match human performance, and the industry has 
begun to rely on a significant amount of synthetic 
data, or data that is created in a simulated environ-
ment, in addition to real-world test miles. In this 
industry, the standard approach uses a vast amount 
of raw data in order to ensure reliability. 

Contrast this to a combat environment, where 
the accumulation of data is incredibly difficult. 
The environment is extremely data-poor, resulting 
in a significant challenge for field testing to deter-
mine system reliability.19 Self-driving cars may 
see hundreds of thousands of examples of stop 
signs in all manner of environments, orientations, 
partial obscurations, and defacements during 
field testing. Combat vehicles will not have such 
data available. Consider for a moment a Russian 
T-90 Armada tank. How many examples would 
it take to achieve human parity with the identi-
fication and classification of such a threat enemy 
combat system? Now let’s consider the number of 
cases where field testing data can be developed. 
The number of actual meeting engagements with 
Russian tanks as example data is infinitesimally 
small compared with the number of stop signs. 
Many novel training approaches are being devel-
oped to address this problem, including synthetic 

Sensing system and wireless communication network of vehicle. (Metamorworks)
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or simulated training environments, but these 
approaches engender their own risks.20 

Applying a human condition as a benchmark 
is likewise equally challenging. Indeed, for each 
system, the failure rate of humans must first be 
measured and then translated into requirements 
for the machine to be benchmarked against. The 
measurement of such failure rates could be incred-
ibly difficult and, in some cases, misleading. In 
many cases, this type of analysis falls victim to what 
is called the “human filter pitfall.”21 In these cases, 
using human failure rates as a benchmark against 
machine performance can be challenging because 
humans and machines perceive their environment 
in different ways. Machines and humans operating 
in the same environment may have wildly different 
failure rates based on their respective limitations. In 
many cases, the machine may perform exceptionally 
in areas that humans routinely fail at and thus meet 
the reliability benchmark, yet routinely fail at other 
common tasks that humans do not find difficult.22 

Additionally, the ability to accurately measure 
human performance, or even to determine what 
parameters human performance should be mea-
sured against, is difficult. Consider again the same 
ML algorithm designed to identify T-90 tanks for 
a ground combat system. How do we determine 
human reliability benchmarks for this relatively 
narrow task? Since the current physical training 
environment is data-poor, that is there are very few 
actual T-90 tanks for soldiers to look at in person, the 
average soldier is essentially trained on flashcards 
of T-90 tank photos. We could, therefore, base the 
reliability standard on the average soldier’s ability to 
accurately identify T-90 tanks in these photos in var-
ious environments. Yet when the soldier, or the ML 
algorithm, encounters this in the field, the reliability 
changes dramatically. A soldier under the stress of 
combat will have remarkably different reliability in 
this task.23 Indeed, the soldier in the rush of com-
bat may not see the tank at all, an error of omission. 

Or they may commit errors of commission, that is, 
misidentify friendly tanks as enemy or enemy tanks 
as friendly. In other cases, the soldier may identify 
the tank, but choose not to engage due to some other 
reason. Perhaps the proximity of non-combatants, 
perhaps there were other nearby targets or other 
indications that the tank was not a threat. In these 
cases, measuring human reliability becomes increas-
ingly challenging. Determining what metric to use as 
a human performance standard must be addressed 
along with the reliability standards for machines. 

Social Acceptability of Reliability Benchmarks
The public’s willingness to accept technological 
change further exacerbates the policy risk that 
mistakes may impose for the use of this technology. 
Indeed, any discussion of reliability ultimately can be 
distilled into a discussion of risk and risk tolerances. 
Defining a reliability metric that constrains the use 
of technology in only those cases where it will always 
outperform a human is one approach to limit risk 
and manage the risk tolerances of the public. Yet the 
risk tolerances of the public are not entirely rational. 
In many cases, the public appears to have a lower risk 
tolerance for technologies that retain certain charac-
teristics. In some cases, this manifests as technologies 
that generate visceral emotions.24 In others, the effect 
is seen where mistakes cannot be easily explained. 25 
In all of these cases, the perceived risk tends to skew 
much higher than the actual risk.26 Several heuristics 
account for the risk perceptions being skewed that are 
particularly relevant to AI technology. This effect is 
even more pronounced with new or novel technolo-
gies that are not easily explained; this effect has been 
labeled as “new-risk.”27 This new-risk phenomenon 
is particularly relevant for AI-enabled systems. A 
significant perception exists that AI is such a new and 
untested technology that it simply cannot be trusted, 
especially in applications with high-consequence. 
This fear tends to outweigh opinions on the suit-
ability for the application even when presented with 
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evidence that the technology will ultimately save lives.
The other relevant heuristic appears to be what 

is known as “Unnatural or Immoral risk.” In other 
words, technologies that are deemed to have high 
ethical risk are viewed as riskier than those of other 
types of risk. This immoral risk phenomenon orig-
inated in the nuclear industry,28 but can easily be 
extrapolated to other novel military technologies that 
were ultimately deemed immoral. Many have said 
that military applications of AI will also fall into this 
same category. Global movements against autono-
mous weapons systems are prime examples of the 
immoral risk perception that accompanies AI in the 
military sector.29 It should be noted that the resistance 
to autonomous weapons systems has followed the 
reasoning used for the banning of other novel tech-
nologies deemed immoral, namely chemical weapons, 
biological weapons, and landmines. In the case of 
AI, the question of responsibility and even whether 
it is morally acceptable or even a violation of human 
dignity to be killed by a robot are ethical questions 
that are being hotly debated.30 Both the newness and 
the perceived immorality combine to form a trust gap 
that must be overcome in DOD policy. 

For most policy documents, the utilitarian 
approach to develop control mechanisms is generally 
appropriate. Yet in this case, this approach would 
lead to a policy mismatch with popular opinion. 
The utilitarian approach to this problem would be 
to say that any AI-enabled tech that can outperform 
a human analog should be allowed to be fielded. 
In effect, the benefit of the increased performance 

would outweigh the risks. Yet the perception of this 
technology does not necessarily follow purely util-
itarian perspectives. This mismatch sets up a trust 
gap that must be overcome in order to achieve public 
support. The deployment of this technology without 
public support would put at risk the continued use of 
the technology and could stymie research and devel-
opment efforts with wide ranging consequences. 

To explain this dynamic, it is important to 
define some terminology. The first concept is the 
human reliability benchmark, which represents 
human analog performance for a tightly controlled 
task as compared to an AI-enabled system per-
forming the same task. The second concept is the 
ultra-reliability benchmark. This benchmark, a 
term borrowed from the airline industry, is a no-fail 
benchmark since any failure would be considered 
unacceptable. Essentially, this ultra-reliability 
benchmark connotes a hypothetical standard where 
no failures should occur under any circumstances. 

The control set for this analysis would be an 
entirely human-controlled system. This is essentially 
the system the DOD has operated under since its 
inception. Under this construct, the population, and 
DOD policy, understand the limitations of soldiers 
under the stress of combat and allow for mistakes 
to be made. The public accepts that human perfor-
mance will never reach the no-fail ultra-reliability 
standard. The space between these two systems 
is defined as the perceived acceptable risk. This 
acceptable risk can be extrapolated out into per-
ceived policy risk.

Baseline: No Automation

Human Reliability 
Benchmark

Ultra-Dependability 
Benchmark

Perceived Acceptable Risk

Figure 1: Baseline Risk Acceptability
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However, as the combat environment has 
continued to become more complex, and weapons 
systems have become more automated, a new layer 
of reliability threshold emerges. Here we may define 
the emergent threshold as an acceptable machine 
reliability benchmark. The space between the 
human reliability benchmark and the machine reli-
ability benchmark illustrates a trust gap. This gap is 
somewhat counterintuitive but can be explained by 
the lack of risk tolerance by the public for “new-risk,” 
or in the case of military technologies, “immor-
al-risk.” In these cases, some mistakes that were 
acceptable for a human operator are not acceptable 
for a machine performing the same task. It can be 
expected, therefore that for technologies with rel-
atively low consequences, the immoral-risk factor 
will be lower, resulting in a smaller trust gap. This 
approach explains that benchmarking machine per-
formance to simply match human performance may 
not be adequate to overcome the perceived accept-
able risk of emerging technologies.

An ethical framework analysis can partially 
explain the emergence of this trust gap. Under a 
utilitarian model, this trust gap would cease to 
exist; it should not matter whether a human or a 
machine was performing the task if the only thing 
that matters is the result. If a machine with high 
consequences outperforms a human operator, then 
by a purely utilitarian logic it would be immoral 
not to field the system. Yet we do not live in a purely 
utilitarian world. As noted above, various heuris-
tics are at play. One of the most powerful is the idea 

of immoral risk. This risk perception relies not on 
utilitarianism but on virtue ethics.31 It is under-
stood that humans have virtues; whether machines 
can have virtues remains an open question. Here, 
the question becomes whether the public will 
accept a mistake made by a potentially unvirtuous 
machine less frequently or by an ostensibly virtuous 
human more often. For these reasons, it can also be 
expected that as automation increases, the trust gap 
will also widen. This phenomenon is largely due to 
the idea that with a small amount of automation, 
humans remain largely in control. Yet as the level 
of automation increases, or the consequences of the 
task being automated increases, people are more 
likely to be dubious of the ability of the machine to 
act as a moral agent. 

This scenario becomes even more pronounced 
when the technology has high consequences. This 
dynamic can be seen playing out in real-time once 
again in the self-driving car industry. In this case, 
the public’s acceptance of perceived acceptable risk 
is exceedingly small.  The self-driving car industry, 
like many DOD programs, is viewed by the public as 
a technology that is highly automated and high-con-
sequence. In this scenario, both the new-risk and the 
immoral risk weigh heavily on public opinion and 
push the acceptable reliability thresholds to reach 
far beyond human performance. In this case, here 
defined as automation with high consequences, the 
trust gap is large and must be overcome by setting 
a reliability benchmark much higher than human 
performance. This trust gap is consistent with the 

Automation with low consequences

Human Reliability 
Benchmark

Acceptable Machine 
Reliability Benchmark

Perceived Acceptable RiskTrust 
Gap

Figure 2: Risk Acceptability in Automation with Low Consequences

Ultra-Dependability 
Benchmark
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ethical risk relevancy matrix outlined above. It 
should be noted that those projects that were iden-
tified as having higher ethical risk would also fall 
victim to the trust gap detailed below. 

The DOD must develop reliability benchmarks 
with these factors in mind. The same consequence 
tiering levels are recommended in order to ade-
quately allow rapid development of those projects 
of lower risk while more tightly controlling those 
of higher risk. In setting these benchmarks, the 
Department must balance the potentially profound 
implications that high-consequence mistakes may 
have on the overall use of the technology with the 
ability to enjoy the benefits that the technology 
promises. It has been well documented that the 
early deployment of this type of technology can 
lead to exponential increases in overall safety. A 
recent study by RAND conducted a detailed anal-
ysis of this very question for self-driving cars and 
found that the deployment of self-driving cars at 
a 10 percent improvement over the human condi-
tion would result in significant savings. The report 
states that “more lives are cumulatively saved under 
the less stringent … policy than the more stringent 
… policies in nearly all conditions.”  The report 
further compared the benefits of early adoption at 
10 percent improvement over human reliability to a 
75 percent and 90 percent improvement and found 
that an early adoption strategy had the result of 
saving, “tens of thousands to hundreds of thou-
sands of lives.”32 Yet this report also argues that this 
approach is a purely utilitarian model and cautions 

against relying on it alone. For the same reasons 
outlined above, the report recommends policymak-
ers determine a middle ground whereby the policy 
is acceptable to the public, while still allowing for 
innovation and rapid adoption. 

This article proposes the following reliability 
benchmarks: Tier 1 projects represent the greatest 
trust gap that must be overcome in order to enjoy 
public approval and therefore, must be the most 
tightly controlled. Therefore, a significant improve-
ment over the human condition is recommended 
before allowing full fielding. Tier 2 projects engen-
der much less consequence, and therefore would 
have a lower trust gap, and can, therefore, be less 
tightly controlled. For these projects, consistent with 
a rapid advancement model, a 10 percent improve-
ment over human condition should be used. Finally, 
for Tier three projects where the consequence of 
failure is low and where there is little to no trust gap, 
it is not recommended to tie reliability metrics to 
human performance.  

Tier 1 – These project categories have huge 
consequences as well as high ethical risks. The 
unique characteristics inherent in autonomous 
weapons systems mean that a purely utilitarian 
approach with a rapid adoption model must be 
avoided. As discussed above, for these projects, a 
very large trust gap must be overcome before any 
mistakes are deemed acceptable by the public.  
Thus, for example, a major backlash against the 
use of lethal autonomous weapons is likely even for 
mistakes made that would be easily explained as 

Automation with high consequences

Human Reliability 
Benchmark

Acceptable Machine 
Reliability Benchmark

Perceived 
Acceptable 

Risk
Trust Gap

Figure 3: Automation with High-consequences
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human error in legacy systems. The potential for 
this backlash could grind all AI-enabled system 
development to a halt—resulting in the potential to 
lose many of the benefits of this technology. 

For this tier of project, a 50-75 percent improve-
ment over human performance is recommended. 
While it is understood that an early adoption meth-
odology that matches, or just slightly improves on, 
human performance would result in more rapid 
development, policymakers must work to find an 
acceptable middle ground that shows a marked 
improvement over human performance. The early 
adoption models have been shown to be effective 
for much more narrowly defined problem sets with 
a smaller trust gap than can be expected for a lethal 
autonomous system. At the same time, the policy 
cannot constrain the technology to a point where 
the perfect becomes the enemy of the good. As was 
demonstrated by the RAND report on autonomous 
vehicles, waiting until a 90 percent improvement 
over the human benchmark provided marginal 
gains over a more modest model with a huge 
tradeoff in time.33  Policymakers must find a middle 
ground, and a 50-75 percent increase in perfor-
mance over human benchmarks will allow the DOD 
to cover the trust gap while still reaping the long-
term benefits of the technology. 

Tier 2 – A 10 percent improvement over human 
performance is recommended for projects with 
safety critical systems or those that provide tar-
geting data. For these systems, utilitarianism wins 
out. The benefits gained by early adoption are more 
important for the DOD than the risks engendered 
by the potential for mistakes. Logic argues that 
performance must equal or exceed equivalency to 
human performance for the technology to make 
sense to field. Yet this technology still falls victim to 
the new-risk phenomenon and holds a small trust 
gap that must be overcome for both the users of the 
technology and the public. In order to overcome 
this gap while still retaining the benefits of an early 
adoption strategy, a modest increase over human 
performance is prudent. 

Tier 3 – For those tier three projects which 
have low consequence, or those with little ethi-
cal risk, it is not recommended to tie reliability 
metrics to human performance. In these cases, 
the benefits of early adoption and continued 
development far outweigh the risk of mistakes. 
Here, the decision becomes one of functionality 
and suitability to the task rather than the relative 
comparisons to human performance in the task. 
Because of this, it is not recommended to place any 
restrictions on these applications.

Consequence Tiering Level Proposed Reliability Benchmarks

Tier 1
Lethal Autonomous or Semi-Autonomous 
Weapons System

50%-75% improvement over human 
performance

Tier 2
Targeting information Systems

10% improvement over human 
performance

Safety-Critical Systems

Tier 3
Privacy concern systems

No human-based reliability benchmark
Business Process systems

Table 2: Benchmarking Projects by Tier
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Conclusion
The Department has made significant strides towards 
the adoption of Artificial Intelligence into critical 
applications across the force. These technologies have 
the potential to be game-changers in the way the U.S. 
military fights its future wars;34 however, by their very 
nature, they engender significant ethical challenges. 
At this early stage of development, the Department 
has the opportunity to achieve its stated goal of 
becoming the leader in ethics for military applica-
tions. The institutional risks of not getting ahead of 
the ethical challenges are stark. If the Department 
runs afoul of industry ethical frameworks, it risks 
alienating industry, forcing broad policy restrictions 
from political leaders, or legal challenges to its imple-
mentation. Each of these challenges has the potential 
to grind AI incorporation into the force to a halt. It 
is, therefore, critical that the Department gains and 
maintains the strategic messaging that it is pursuing 
this technology in an ethical fashion and that its use 
will benefit the United States. 

It is time to move past broad ideas of ethical 
AI in principle and translate these principles into 
actionable controls that will keep the advancement of 
this technology inside the bounds of ethical behavior. 
DOD must create policies which govern the ethical 
development of this technology. By using a risk man-
agement methodology, as detailed above, it will allow 
the Department to tightly control those projects of 
high risk while allowing low risk projects to speed 
through the system. In doing so, the Department can 
push the boundaries at the technological edge with 
projects of low consequence while tightly controlling 
those of high consequence. This risk-based frame-
work lends itself to applying a myriad of controls on 
projects including the reliability benchmarks and 
test and evaluation policies detailed in this arti-
cle. The Department, starting with the JAIC, must 
institutionalize ethics as part of its ongoing, routine 
business practices. This focus cannot be viewed as a 
barrier to development or a bureaucratic process that 

slows implementation but instead as an essential task 
to smoothly incorporate AI into the force. The ethi-
cal challenges with AI are not insurmountable; they 
do, however, need to be addressed and mitigated in a 
formalized fashion for the adoption of this technol-
ogy to move forward. PRISM
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